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Fourier spectral method can achieve exponential accuracy both on the approxi- 
mation level and for sQIving partial differential equations if the solutions are 
analytic. For a linear PDE with discontinuous solutions, Fourier spectral 
method will produce poor point-wise accuracy without post-processing, but still 
maintains exponential accuracy for all moments against analytic functions. In 
this note we assess the accuracy of Fourier spectral method applied to nonlinear 
conservation laws through a numerical case study. We have found out that the 
moments against analytic functions are no longer very accurate. However the 
numerical solution does contain accurate information which can be extracted by 
a Gegenbauer polynomial based post-processing. 

KEY WORDS: Spectral method; accuracy; Gibbs phenomenon; nonlinear 
conservation laws. 

1. I N T R O D U C T I O N  

In this note we are concerned with the accuracy of Fourier spectral method 
when applied to a nonlinear conservation law 

O,u+Oxf(u)=O, - I  <~x< 1 
(1.I) 

u(x, O) = u°(x) 

where the initial condition u°(x) is 2-periodic. As is well known, solutions 
to Eq. (1.1) typically contain discontinuities even if the initial condition 
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u°(x) is analytic (in this paper, for simplicity of presentations, we will use 
analytic functions to represent general smooth functions. Similar results 
can also be obtained for C * or C ~ functions). The purpose of this note is 
to assess accuracy under such situation through a numerical case study. 

We start by recalling the Fourier approximation operator Sw to an L 2 
function u(x): 

N 
S~vu(x) = ~, ~ke ik''" (1.2) 

k=--N 

where the Fourier coefficients t~k are defined by 

! 
ak=½ f u(x) e-ik'~Xdx (1.3) 

- 1  

for Fourier Galerkin, and by 

I N 2]" ( 1 . 4 )  
t~k=2N+~ ~ u(xj)-ik,.,~, x J = 2 N +  1 

j=--N 

for Fourier collocation. We will also use the notation lgN(X ) = gNU(X).  To 
solve the partial differential Eq. (1.1), the standard Fourier spectral algo- 
rithm is 

SN(OtUN-I-Oxf(1)N))=O, - I  <~x< 1 
(1.5) 

VN(X, O) = S~u°(x) 

where VN(X, t)=z~v=_NOk(t)eiknx is supposed to approximate the exact 
solution u(x, t) of Eq. (1.1), and SN is either the Galerkin or the collocation 
Fourier approximation operator defined by Eqs. (1.2) and (1.3) or by Eqs. 
(1.2)-(1.4). 

The approximation error 

u(x) - SNU(X) (1.6) 

is well known to be exponentially small (i.e., it is of the size O(r N) for some 
0 < r < 1 ) if u(x) is analytic. However, if u(x) is only piecewise analytic but 
dicontinuous, the approximation error (1.6) is O(1) near the discontinuity 
and only first order (i.e., it is of the size O(l/N)) elsewhere. This is known 
as the Gibbs phenomenon. See, e.g., Gottlieb and Orszag (1977) and 
Canuto et al. (1988). Fortunately, even if the accuracy is poor in the point- 
wise sense, it is still excellent for the moments against any analytic func- 
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tions. For any L 2 function u(x) and any analytic function w(x), we have 
Gottlieb and Tadmor (1985): 

I fI_I (U(X)--UN(X)) W(x) dx[ <~ Cr u (1.7) 

for some constant C and 0 < r < 1. This property is the basis of all the 
"reconstruction" or "post-processing" techniques. These techniques try to 
recover exponential or at least high order accuracy for point values based 
on the Fourier approximation SNU(X) of a piecewise analytic function. In 
other words, one tries to obtain a small post-processed approximation 
error 

U(X) -- PNSNU(X) (1.8) 

where PN is some post-processing operator. Examples of PN include 
various high frequency filters Madja et al. ( 1978); Kreiss and Oliger ( 1979); 
Vandeven (1991) and Cai et al. (1992); which are of the form 

PN SNu(x)  = 2 a ak eik'" (1.9) 
k~ --N 

with SNU(X) given by Eq. (1.2). The function a(~) in Eq. (1.9) is even (or 
satisfies a ( -~ )=c r (~ )  if it is complex valued as in Cai et aL (1992)), 
smooth (the accuracy of the filter depends upon its smoothness), supported 
in ( - 1, 1 ) and satisfies tr(0) = 1 and O'lk~(0) = 0 for 1 ~< k ~< K (with accuracy 
of the filter again depends upon K). These filters can recover high order or 
even exponential accuracy in the smooth regions away from the discon- 
tinuities (the filter by Cai et al. (1992) can also recover high order accuracy 
up to the discontinuity from one side). A more recent example of PN is the 
Gegenbauer polynomial based procedure discussed by Gottlieb et al. 
(1992) and Gottlieb and Shu (1993, 1994, 1994a, 1995), which can give 
uniform exponential accuracy for all x right up to the discontinuity for 
piecewise analytic functions. In this sense spectral Fourier approximation is 
also exponentially accurate for piecewise analytic functions--one only has 
to extract the hidden information from the poor approximation SN(X) 
using the post-processor PN. 

When spectral method is used to solve the PDE in Eq. (1.1), we can 
consider the following different types of errors. The strongest is the point- 
wise error from the exact solution u(x, t): 

u(x, t)-vu(x,  t) (1.10) 



360 Shu and Wong 

which cannot be small even for t--O due to the Gibbs phenomenon. 
A more reasonable error is the point-wise error of the numerical solution 
vN(x, t) from the Fourier approximation of the exact solution UN(X, t): 

uu(x,  t)--VN(X, t) (1.I 1) 

If this error is exponentially small, we can claim the spectral method for 
Eq. (1.1) is exponentially accurate because of the post-processor Eq. (1.8) 
for the exact solution u(x, t). An even weaker error is defined by the error 
in the first few Fourier coefficients, i.e. 

t"tk(t) - gk(t) (1.12) 

for the first few k, where ~k(t) are the Fourier coefficients of the exact solu- 
tion u(x, t) of Eq. (1.1). This is actually an example of the more general 
definition of error in moments against any analytic function w(x): 

1 
f (LIN(X)--L'N(X)) W(X) dx (1,13) 

- I  

In fact, as long as this error in moments is exponentially small, we dan 
claim that the spectral method is exponentially accurate in solving Eq. ( 1.1 ) 
by using property of Eq. (1.7) for the exact solution u(x, t) and the post- 
processing of Eq. ( 1.8 ). 

If the PDE (1.1) is linear (i.e., f ( u ) = a ( x ,  t)u), it is proven by Gottlieb 
and Tadmor (1985), Abarbanel et al. (1986) that spectral Fourier method 
is exponentially accurate in the sense that Eq. (1.13) is exponentially 
small. A post-processing Eq. (1.8) applied to VN(X, t) would then yield an 
exponentially accurate pointwise approximation to the exact solution 
u(x, t). However, if Eq.(1.1) is nonlinear, it is still a theoretically open 
problem whether spectral Fourier method, equipped with either high fre- 
quency filtering or vanishing viscosity Tadmor (1989); Maday and Tadmor 
(1989), is exponentially (or high order) accurate in the sense of Eq. (1.13). 
Computational evidence in Maday et al. ( t 993) seems to suggest that, even 
in this nonlinear case, highly accurate information is still implicitly con- 
tained in the numerical solution and can be extracted (at least away from 
the discontinuity) by a post-processing using high frequency filtering. In the 
next section we will perform a detailed numerical case study about this 
accuracy issue for Burgers' equation ( f ( u ) =  u2/2). We use a high frequency 
solution filter to stablize the algorithm, and post process the numerical 
result using the Gegenbauer polynomial based procedure Gottlieb et al. 
(1992); Gottlieb and Shu (1994a). We observe that the spectral Fourier 
method is not very accurate in the sense of moments against analytic 
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functions Eq.(1.13). However, numerical evidence does indicate the 
possibility of very high accuracy under some weaker definition of accuracy, 
perhaps some average of Fourier coefficients, since the post-processed 
result PNV~X, t) is much more accurate than the Fourier coefficients them- 
selves, and accurate Fourier coefficients can be "reconstructed" for this 
post-processed solution P NV N( X, t ). 

2. A NUMERICAL CASE STUDY ABOUT ACCURACY 

In our numerical solution reported in this section, time discretization 
is by a third order Runge-Kutta method, with a time step ~t sufficiently 
small such that spatial error is dominant in all cases. We compute the exact 
solutions of the PDE by Newton iterations on the implicit characteristic 
equations, and compute the Fourier coefficients of a function (if not 
analytically given) by using a sufficiently accurate numerical quadrature. 

We first solve a linear equation 

3 
O,u+ 5_4cos(nx)O.,.u=O, - l ~ < x < l  

u(x, O)= x 
(2.1) 

with periodic boundary conditions, up to t = 1, using the Fourier Galerkin 
method: 

( 3 ) 
S N OtONq-5_4COS(7~X)  O.,.UN = 0  

(2.2) 
U ( - 1 )k i  i~,~.,- 

e UN(X , O) "~ S N X  = 2 kn 
k~ - N  

k~O 

Standard Galerkin method is stable for this linear problem but produces 
poor point value accuracy (Fig. 1, top). However, the accuracy in the first 
few Fourier coefficients, as representatives of moments against analytic 
functions, are computed more accurately (Fig. 1, bottom). 

In order to compare with the nonlinear case reported later, we solve 
the same linear equation in Eq. (2.1) using the filtered Fourier method, i.e., 
after each Runge-Kutta time step, the numerical solution is filtered by 
Eq. (1.9) with the exponential filter: 

a ( ~ )  = e - ~  I¢1' ( 2 . 3 )  
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Fig. 1. Errors in log scale, linear PDE (2.1). Fourier Galerkin using 2 N + l  modes, for 
N =  10; N = 2 0 ;  N = 4 0  and N=80 .  Top: Point-wise errors; Bottom: errors in the first 10 
Fourier coefficients. 

where r is increasing with N and is related to the order of the filter, and 
c~ is chosen such that e -~ equals machine zero (10- ~6 for double precision). 
The exponential filter in Eq. (2.3) has the advantage of simplicity, and 
usually it works equally well as more complicated filters Vandeven ( I991 ). 
For this linear problem, as well as for the nonlinear Burgers' equation 
later, we will use the Fourier method with the following choice of filter 
orders: r = 4  for N =  10; r = 6  for N = 2 0 ;  r = 8  for N = 4 0  and r =  12 for 
N =  80. The result is shown in Fig. 2. Comparing with Fig. 1, we can see 
better point value accuracy in the smooth region because of the filters, and 
similar (good) accuracy for the first few Fourier coefficients. 

The computational result for the linear equation is not surprising since 
it just shows the proven fact Gottlieb and Tadmor (1985), Abarbanel et al. 

(1986) that Fourier coefficients, as representatives of moments against 
analytic functions, are computed with exponential accuracy by the spectral 
Fourier method, and filtering will recover exponential point value accuracy 
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Fig. 2. Errors in log scale, linear PDE (2.1). Fourier Galerkin using 2 N + I  modes with 
exponential solution filters of order r. r = 4  for N =  I0; r = 6  for N = 2 0 ;  r = 8  for N = 4 0  and 
r =  12 for N =  80. Top: point-wise errors; Bottom: errors in the first 10 Fourier coefficients. 

in smooth regions away from the discontinuity. It should be noticed that, 
for the same N, the accuracy for the first few Fourier coefficients is at the 
same level at or better than the best point value accuracy in the smooth 
region after filtering. This is again not surprising since point value accuracy 
is obtained from the Fourier coefficients through filtering. 

We now come to the nonlinear problem we are really interested in: we 
solve the nonlinear Burgers' equation 

/A- 
8,u+Ox =0, - l ~ x < l  

u(x, 0 ) = 0 . 3  +0 .7  sin(nx) 

(2.4) 

The solution develops a shock at t = 1/0.7n and we compute the solution 
up to t = 1. The initial condition is chosen such that shock is moving with 
time. For this nonlinear PDE, the standard Galerkin method cannot 



364 Shu and Wong 

converge to the entropy solution Tadmor (1989). One would need to add 
dissipations either by the high frequency solution filtering Eq. (1.9) or by the 
spectral vanishing viscosity Tadmor (1989); Maday and Tadmor (1989); 
and Maday et al. (1993). Numerical results for the Burgers' equation with 
the vanishing viscosity method can be found in, e.g., Maday et al. (1993). 
Here we will only report the results obtained by solution filtering, using the 
same r as in the previous linear case Eq. (2.1). We have also computed with 
the vanishing viscosity methods and have obtained similar results. 

In Fig. 3, we plot the point-wise error u(x,  t) - vN(x,  t) (top), and the 
error for the first I0 Fourier coefficients (bottom). While the pattern of 
the point-wise errors are similar to the linear case in Fig. 2, the errors for 
the Fourier coefficients are clearly much worse in comparison. As a matter 
of fact, for the same N, the errors for the first few Fourier coefficients are 
a few magnitudes larger than the smallest point value error in the smooth 
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Fig. 3. Errors in log scale, Burgers Eq. (2.4). Fourier Galerkin using 2 N + I  modes with 
exponential solution filters of order r. r = 4  for N =  10; r = 6  for N = 2 0 ;  r = 8  for N = 4 0  and 
r =  12 for N = 80. Tip: point-wise errors; Bottom: errors in the first 10 Fourier coefficients. 
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region. This is clearly different from what we observe in the linear case in 
Fig. 2, and suggests that the first few Fourier coefficients, again as repre- 
sentatives of moments against analytical functions, are no longer computed 
with exponential or high order accuracy. It is sort of puzzling that each 
difference in the Fourier coefficients G ( t ) -  G( t )  is relatively large (Fig. 3 
bottom), but the point-wise error u(x, t) - VN(X, t), which is just an average 
of ~k( t ) - -~k( t )  (against an O(1) function eik~"), is much smaller in the 
smooth region (Fig. 3 top). Clearly some cancellation is present. 

Next, we apply the Gegenbauer post-processor Gottlieb et al. (1992) 
to v~v(x, t). This procedure can be roughly described as follows: given the 
Fourier partial s u m  ~tu(X ) of an analytic but not periodic function u(x),  
one first finds the approximations to the first m Gegenbauer expansion 
coefficients of the function u(x).  Here Gegenbauer polynomials are ortho- 
gonal polynomials in [ - 1, 1 ] under the weight function ( 1 - x-) "- ~/2 One 
then uses this Gegenbauer series with the first m terms to approximate u(x) 
everywhere in [ - 1, 1 ]. To use this procedure, one must know the location 
of the discontinuity (however, the procedures by Gottlieb and Shu (1993) 
allows one to handle the case where the location is not known exactly), 
and to choose the parameters 2 and m. It is proven by Gottlieb et al. 
(1992) that when m and 2 are both chosen proportional to (but less than) 
N, the reconstructed point values are exponentially accurate everywhere 
inside [ - 1 ,  1]. Thus Gibbs phenomenon is completely removed. The 
details can be found in Gottlieb et al. (1992); Gottlieb and Shu (1993, 
1994, 1994a, 1995), and unpublished works. 

We would like to point out that there is no theoretical justification in 
doing this post-processing for the current nonlinear case, since the post- 
processing procedure assumes that the Fourier coefficients are accurate, 
which is not true any more. However, the post-processed result is sur- 
prisingly good (Fig. 4). Just like in the approximation test cases Gottlieb 
et al. (1992). We can observe good accuracy everywhere including at the 
discontinuity x = _+ 1 + 0.3. The reconstructed Fourier coefficients, namely 
the Fourier coefficients of PNIJN(X, 1), are much more accurate than before 
the post-processing (compare Fig. 4 bottom with Fig. 3 bottom). 

This suggests that, even if VN(X, t) or its Fourier coefficients G(t )  are 
not very accurate, it contains accurate information which is extracted in 
this case by the Gegenbauer polynomial based post-processor PN. This 
numerical evidence suggests that in the nonlinear PDE case, Fourier coef- 
ficients G(t), just like point-wise values in the linear (or nonlinear) PDE 
case, are no longer good indicators of accuracy. They themselves are not 
very accurate, but they implicitly contain accurate information which can 
be extracted by adequate post-processors PN. This accurate information 
might be contained in some averages of the Fourier coefficients (since the 
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Fig. 4. Errors in log scale, Burgers Eq.(2.4). Fourier Galerkin using 2 N + I  modes with 
exponential solution filters of order r. r = 4  for N =  10; r = 6  for N = 2 0 ;  r = 8  for N = 4 0  and 
r =  12 for N = 80. Gegenbauer post-processed, with parameters 2 = 2, m = 1 for N = 10; )~ = 3, 
m = 3  for N = 2 0 :  2 =  12, m = 7  for N = 4 0  and 2 = 6 2 ,  m =  15, for N = 8 0 .  Top: point-wise 
errors; Bottom: errors in the first 10 Fourier coefficients. 

post-processing procedure based on Gegenbauer polynomials Gottlieb 
et al. (1992) uses certain averages of Fourier coefficients rather than the 
coefficients themselves). 

We finally make two remarks: 

Remark 2.1. In the previous Gegenbauer reconstruction procedure, 
we have used the exact shock location. The procedure by Gottlieb and Shu 
(1993) allows us to use an approximate shock location, determined from 
the Fourier coefficients themselves [e.g., Cai et al. (1992)].  Similarly good 
results can be obtained when the reconstruction is performed in a slightly 
smaller sub-interval inside which the solution is guaranteed to be analytic. 
For example, we use the shock detector by Cai et al. (1992), which in this 
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Fig. 5. Point-wise Errors in log scale, Burgers Eq. (2.4). Fourier method using 2 N +  1 modes 
with exponential solution filters of order r. r = 4 for N = I0; r = 6 for N = 20; r = 8 for N = 40 
and r =  12 for N =  80. Top: Galerkin, Gegenbauer post-processed with a numerically deter- 
mined shock location using the techniques in [2] ,  which for this problem produce shock loca- 
tions to within 0.0000025 for all the N used. The reconstruction subinterval is [ -0 .999997,  
0.999997] when the numerical shock is shifted to x = - 1 .  Parameters: 2 = 2, m = 1 for N =  10; 
2 = 3 ,  m = 3  for N = 2 0 ;  2 = 2 6 ,  m = 9  for N = 4 0  and 2 = 5 2 ,  m = 1 7 ,  for N = 8 0 .  Bottom: 
collocation• Gegenbauer post-processed, with parameters 2 = 2, tn = 1 for N =  10; 2 = 3, rn = 3 
for N = 20; 2 = 26, m = 9 for N = 40 and 2 = 60, m = 15, for N = 80. 

case detects the shock location to within 0.0000025 for all the N values 
used, and a reconstruction inside the sub-interval [ - 0 . 9 9 9 9 9 7 ,  0.999997],  
which is just slightly smaller than [ -  1, 1 ] (when numerically detected 
shock is shifted to x = - 1 )  and guarantees that the true shock is outside 
this region. The result is shown in Fig. 5 (top). It is clearly as good as the 
case where the exact shock location is used (compare with Fig. 4 top). 
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R e m a r k  2,2. I f  we use co l l oca t i on  in Eq. (1.4) ins tead  of  G a l e r k i n  
[ fo r  the  r econs t ruc t ion  p rocedure ,  see G o t t l i e b  and  Shu (1994a) ] ,  the  
result  is a lmos t  ident ica l ly  good:  C o m p a r e  Fig. 5 ( b o t t o m )  with  Fig. 4 
( top) .  

3. C O N C L U D I N G  REMARKS 

T h r o u g h  a careful  numer ica l  case s tudy  for the Burgers '  equa t ion ,  we 
have found  tha t  the  F o u r i e r  spec t ra l  me thod ,  e q u i p p e d  wi th  spec t ra l ly  
small  d i s s ipa t ions  in the  form of  high f requency filters o r  van ish ing  
viscosit ies,  are  not  accura te  in the first few F o u r i e r  coefficients, or  in 
m o m e n t s  aga ins t  s m o o t h  functions.  However ,  accura te  i n fo rma t ion  is 
indeed con ta ined  in the numer ica l  so lu t ion ,  and  can be ex t rac ted  by us ing  
the G e g e n b a u e r  p o l y n o m i a l  based  p o s t - p r o c e s s o r  by  G o t t l i e b  et al. (1992) 

and  G o t t t i e b  and  Shu (1993, 1994, 1994a, 1995). 
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